ANALISIS *TIME SERIES* PENUTUPAN HARGA SAHAM PT. BANK JAGO TBK. (ARTO) MENGGUNAKAN ALGORITMA

REGRESI LINEAR

Melinia Nur Harum Fadila¹, Nengah Widya Utami², I Gst. Agung Pramesti Dwi Putri³
Program Studi Sistem Informasi Akuntansi, STMIK Primakara
Jl. Tukad Badung No. 135, Renon Denpasar Selatan, Kota Denpasar, Bali

¹mharumfadila@gmail.com, ²widya@primakara.ac.id, ³pramesti@primakara.ac.id

Abstract— Saham merupakan surat kepemilikan atas suatu perusahaan. Harga saham dapat mengalami perubahan dalam waktu yang singkat, maka dari itu untuk mengamati perubahan harga saham investor dapat menggunakan alat prediksi serta analisis untuk membuat keputusan investasi. Salah satu emiten yang harga sahamnya dapat di prediksi adalah PT. Bank Jago Tbk. (ARTO). Tujuan dari penelitian ini adalah untuk mengetahui hasil dari analisis prediksi penutupan harga saham PT Bank Jago Tbk. (ARTO). Harga saham ARTO dapat dianalisa menggunakan teknik Data Mining. Harga saham ARTO akan di prediksi menggunakan Algoritma Regresi Linear. Tingkat akurasi dan evaluasi dalam penelitian ini diukur menggunakan Root Mean Square Error (RMSE). Penelitian ini menghasilkan penutupan harga saham ARTO dengan dataset sebanyak 678 data yang di prediksi menggunakan metode Regresi Linear dengan perbandingan 90% data training dan 10% data testing menghasilkan nilai akurasi prediksi RMSE 103,064 yang dimana nilai akurasi prediksi tersebut merupakan yang paling baik diantara VAR Model dan ARIMA Model. Untuk penelitian berikutnya yang ingin prediksi penutupan harga berkelanjutan di sarankan untuk menggunakan VAR model dan ARIMA model.

Kata kunci: Data Mining, Time Series, Saham, ARTO, Regresi Linear

I. PENDAHULUAN

Perkembangan reformasi teknologi 4.0 saat ini sangat berpengaruh terhadap mata pencaharian masyarakat hampir di segala bidang yang ada khususnya di Indonesia. Dukungan dan peran digital saat ini memudahkan seseorang untuk mendapatkan penghasilan lebih dengan memanfaatkan kegunaan internet seperti melakukan investasi secara online pada beberapa platform digital. Investasi merupakan penanaman modal untuk satu atau lebih aktivitas yang dimiliki dan umumnya untuk jangka waktu yang panjang dengan harapan dapat menghasilkan keuntungan di masa yang akan datang[1]. Seseorang dapat melakukan investasi melalui pembelian tanah, mesin, emas dan bangungan. Selain itu kegiatan investasi juga dapat berupa pembelian aset finansial seperti deposito, saham maupun obligasi. Saham adalah surat kepemilikan atas suatu perusahaan. Membeli saham menandakan bahwa seseorang telah memiliki sebagian atas kepemilikan perusahaan tersebut. Pemilik saham berhak atas keuntungan perusahaan dalam bentuk dividen[2].

Perubahan harga saham merupakan indikator yang diperhatikan oleh investor dimana perubahan harga saham ini memiliki laju yang cukup cepat. Terdapat berbagai macam faktor yang mempengaruhi pergerakan harga saham seperti besar kecilnya tingkat suku bunga deposito, pergerakan tingkat inflasi, kondisi keuangan perusahaan, strategi pemasaran dan tingkat keuntungan yang diperoleh perusahaan[3]. Berdasarkan data pada idx.co.id bulan Oktober tahun 2021 terdapat 750 emiten yang tercatat pada Bursa Efek Indonesia, salah satunya adalah PT Bank Jago Tbk. dengan kode ARTO. PT Bank Jago Tbk berdiri dengan nama PT. Bank Artos Indonesia di Bandung tahun 1992. Pada tahun 2020 lalu, PT Bank Artos Indonesia melakukan perubahan nama menjadi PT. Bank Jago Tbk. Berdasarkan perubahan kondisi yang dialami oleh PT. Bank Jago Tbk. yang sebelumnya merupakan sebuah Bank Konvensional dan berubah menjadi sebuah Bank Digital, diketahui bahwa saham ARTO mengalami fluktuasi.

ISSN: 2085-6350

Fluktuasi yang dialami oleh ARTO membuat investor ingin mengetahui bagaimana kinerja saham ARTO kedepannya, apakah kenaikan harga saham ARTO akan terus terjadi setelah berubah menjadi bank digital atau harga saham ARTO akan kembali turun seperti sebelum menjadi sebuah bank digital. Oleh karena itu, penulis berencana membuat alternatif untuk memanfaatkan teknik data mining dengan menggunakan algoritma Regresi Linear dalam melakukan prediksi pada penutupan harga saham ARTO. Metode Regresi Linear adalah salah satu metode yang digunakan untuk melakukan prediksi menggunakan garis lurus sehingga dapat dilihat dan digambarkan hubungan di antara dua variabel atau lebih. Salah satu kelebihan dari metode Regresi Linear adalah metode ini dapat digunakan untuk peramalan pada penutupan harga saham di masa yang akan mendatang[4].

Berdasarkan latar belakang yang telah dijabarkan oleh penulis diatas serta fenomena yang telah terjadi, maka penulis tertarik untuk melakukan penelitian dengan judul "Analisis *Time Series* Penutupan Harga Saham PT Bank Jago Tbk. (ARTO) Menggunakan Algoritma Regresi Linear" dimana penelitian ini bertujuan untuk membantu investor dalam memprediksi bagaimana alur investasi bekerja pada masa yang akan mendatang, khususnya investor yang menanamkan modalnya di saham ARTO.

II. TINJAUAN PUSTAKA

A. Penelitian Terkait

Terdapat beberapa penelitian yang telah dilakukan oleh peneliti terdahulu yang berkaitan dengan prediksi harga saham menggunakan algoritma Regresi Linear. Seperti penelitian yang dilakukan oleh Merfin dan Raymond Sunardi Oetama, tahun 2019 dengan judul "Prediksi Harga Saham Perusahaan Perbankan Menggunakan Regresi Linear. Studi Kasus Bank BCA Tahun 2015-2017" dengan hasil MAPE terbesar dengan angka 14.765,67 dan terkecil dengan angka 234,64[5].

Penelitian yang serupa juga telah dilakukan oleh Ekka Pujo Ariesanto Akhmad (2020) yang berjudul "Data Mining Menggunakan Regresi Linear untuk Prediksi Harga Saham Perusahaan Pelayaran" dengan hasil Evaluasi nilai Root Mean Square Error (RMSE) menunjukkan angka plus 7,522 dari data aktual harga penutupan saham periode harian PT.BULL[5].

Penerapan algoritma *Regresi Linear* dalam memprediksi harga saham juga telah dilakukan oleh Vaishnavi Gururaj, Shriya VR dan Dr.Ashwini K. (2019) dengan judul penelitian "Stock Market Prediction Using Linear Regression and Support Vector Machines" dimana hasil dari penelitian tersebut adalah Pengujian algoritma Linear Regressi memperoleh hasil RMSE 3.22, MAE 2.53, UMK 10.37 dan R-Kuadrat 0.73. Sedangkan pengujian menggunakan Support Vector Machine memperoleh hasil RMSE 1.58, MAE 1.33, UMK 2.51 dan R-Kuadrat 0.93[6].

Selain itu, penelitian lain juga dilakukan oleh R.Seethalaksmi (2018) dengan judul "Analisis Variabel Prediktor Pasar Saham Menggunakan Regresi Linier" dimana hasil dari penelitian tersebut adalah Model 1 dengan semua fitur memperoleh nilai R₂ 0,997. Ini menunjukkan pembukaan, tinggi, rendah, volume dan penutupan adj sangat penting untuk memprediksi nilai penutupan secara akurat. Model 2 dengan nilai tutup prediksi terbuka, tinggi dan rendah yang memperoleh nilai R2 0,992. Hal ini menunjukkan prediksi nilai close tidak terpengaruh dengan adj close[7].

Penerapan algoritma *Regresi Linear* dalam prediksi harga saham juga telah dilakukan oleh Subhash Chand Agrawal (2021) dengan judul penelitian "Deep Learning Based non-Linear Regression for Stock Prediction" dimana hasil dari penelitian tersebut adalah Pengujian algoritma Linear Regressi memperoleh hasil RMSE 5.76 untuk saham Google dan 0.56 untuk saham Apple[8].

Berdasarkan penelitian terdahulu diatas, maka penelitian ini menerapkan metode *Regresi Linear* dalam memprediksi penutupan harga saham PT. Bank Jago Tbk. (ARTO).

B. Investasi

Investasi adalah sumber daya keuangan atau lainnya yang dikeluarkan untuk memiliki suatu aset di masa menghasilkan dan dirancang untuk keuntungan di masa yang akan depan. Aset investasi dapat berupa aset finansial seperti saham, deposito, obligasi dan surat berharga pasar uang lainnya. Selain aset finansial, aset investasi juga dapat berupa aset berwujud seperti bangunan, mesin, tanah serta benda fisik lainnya yang bernilai ekonomi. Pihak yang menanamkan modal dapat disebut investor yang dapat individual dan institusional. Investor institusional biasanya dapat berupa perusahaan pada sektor keuangan, seperti perusahaan asuransi, bank dan bank tabungan, perusahaan investasi dan lain sebagainya[9].

C. Saham

Saham merupakan surat berharga yang menunjukkan bagian kepemilikan suatu perusahaan. Harga saham adalah harga yang terjadi di pasar saham pada waktu tertentu, yang ditentukan oleh permintaan dan penawaran saham yang dilakukan oleh pelaku pasar di pasar saham[10].

D. Data Mining

Data mining merupakan aktivitas yang berhubungan dengan pengumpulan data, penggunaan data historis untuk mendapatkan informasi, pengetahuan, keteraturan, pola atau hubungan pada data yang berukuran besar. Hasil dari data mining dapat dimanfaatkan sebagai alternatif untuk pengambilan keputusan atau dapat dipergunakan untuk memperbaiki pengambilan keputusan di masa mendatang[11].

E. Time Series

Time series merupakan sekumpulan nilai yang diperoleh dari pengukuran berurutan dari waktu ke waktu. Time series dapat diartikan juga sebagai hasil pengamatan dari proses yang mendasar di mana nilai – nilai dikumpulkan dari pengukuran yang dilakukan pada waktu yang beragam. Time series mencakup kumpulan data lengkap yang disediakan oleh pengamatan suatu proses yang cukup panjang [12].

F. Regresi Linear

Regresi merupakan teknik yang terdapat dalam data mining dimana dapat dimanfaatkan untuk memprediksi nilai – nilai numerik yang ada pada *range* sekumpulan data yang diketahui[4]. Regresi memiliki dua model dasar, yaitu regresi linear sederhana dan regresi linear berganda. Regresi linear sederhana digunakan untuk memprediksi hubungan antara dua variabel, sedangkan regresi linear berganda memiliki dua atau lebih dari dua variabel. Persamaan umum dari regresi linear berganda adalah:

Y = a + b1X1 + b2X2 + bnXnY

Keterangan:

Y: Variabel terikat

X: Variabel – variabel bebas

a: Konstanta

b: Koefisien regresi pada masing – masing variabel bebas

G. Orange Data Mining

Orange Data Mining merupakan Machine Learning (ML) Data Mining yang menggunakan skrip python serta pemrograman visual yang menampilkan analisa data interaktif dan perakitan sistem Data Mining berbasis komputer. Platform Orange Data Mining memberikan beberapa pilihan kepada user untuk digunakan sebagai eksperimen, pemodelan prediktif serta sistem rekomendasi[13].

III. METODOLOGI PENELITIAN

A. Knowledge Discovery in Database (KDD)

KDD adalah proses penemuan informasi pada sebuah *database*. KDD merupakan seluruh proses ekstrasi atau identifikasi pola, pengetahuan serta informasi potensial yang didapatkan dari himpunan data besar. Pengetahuan serta informasi yang dihasilkan pada proses KDD bersifat sah, baru, mudah dipahami dan bermanfaat[14]. Terdapat beberapa tahapan yang harus dilakukan secara berurutan dari awal hingga akhir dalam proses KDD:

1. Selection

Selection merupakan proses penyaringan data setelah mempersiapkan data yang akan digunakan dalam proses KDD, karena tidak semua data yang sudah dimiliki dapat dipergunakan[14]. Data histori saham yang diperoleh dari PT.Bank Jago Tbk. (ARTO) merupakan data histori saham yang di seleksi dari tahun 2019 sampai dengan tahun 2021 sebanyak 737 data.

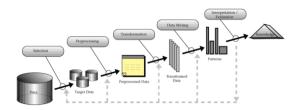
2. Pre-processing/Cleaning

Proses *cleaning* meliputi pembuangan data yang sama, perbaikan data yang tidak konsisten serta perbaikan data yang memiliki kesalahan[14]. Proses *cleaning* terhadap 737 data dilakukan dengan menghapus beberapa atribut dan data yang tidak dapat digunakan seperti data *null*. Sebanyak 737 data tersebut menghasilkan 678 data yang telah tersaring.

3. Transformation

Data yang telah dipersiapkan untuk digunakan dalam proses KDD terlebih dahulu harus diubah sesuai dengan algoritma yang akan digunakan dalam *data mining* [14].

4. Data Mining


Data mining merupakan pengkajian serta penggalian informasi dan pengetahuan yang bermanfaat dengan menerapkan algoritma yang sesuai dengan pengetahuan atau informasi yang dicari[15]. Penelitian ini menggunakan metode Regresi Linear serta aplikasi yang digunakan untuk perhitungan dalam penelitian ini adalah Orange Data Mining.

5. Interpretation/Evaluation

Pengetahuan atau informasi yang telah dihasilan dalam proses *data mining* akan diperiksa terlebih dahulu apakah hasil tersebut

bertentangan atau tidak dengan fakta atau hipotesis yang sebelumnya[14].

ISSN: 2085-6350

Gambar 1 Metode KDD

B. Langkah Perhitungan Manual Algoritma Regresi Linear

Dibawah ini merupakan tahapan – tahapan dari perhitungan algoritma Regresi Linear secara manual dengan menggunakan contoh dari 10 data history saham ARTO:

I. Tahap 1 Menentukan Dataset Saham ARTO dengan 5 Variabel Bebas dan 1 Label

Tabel 1 Contoh Data Saham ARTO

Date	Close (Y)	Open (X1)	High (X2)	Low (X3)	Volume (X4)
04/01/21	3.516	3.566	3.641	3.467	2.032.849
05/01/21	3.691	3.566	3.981	3.550	12.598.749
06/01/21	3.491	3.732	3.815	3.433	16.386.151
07/01/21	3.574	3.508	3.608	3.508	6.066.475
08/01/21	3.550	3.574	3.608	3.541	2.570.996
11/01/21	3.566	3.550	3.583	3.458	4.609.754
12/01/21	3.566	3.566	3.599	3.525	3.458.220
13/01/21	3.608	3.566	3.807	3.550	5.122.217
14/01/21	3.765	3.632	3.815	3.632	4.986.565
15/01/21	4.706	3.782	4.706	3.765	31.613.653
	ΣΥ	ΣΧ1	ΣΧ2	ΣΧ	ΣΧ4
	37.033	36.042	38.163	3 35.429	89.445.629

II. Menentukan Nilai X1Y, X2Y, X3Y dan X4Y **Tabel 2 Nilai X1Y, X2Y, X3Y dan X4Y**

X1Y	X2Y	X3Y	X4Y
12.538.056	12.801.756	12.189.972	7.147.497.084
13.162.106	14.693.871	13.103.050	46.501.982.559
13.028.412	13.318.165	11.984.603	57.204.053.141
12.537.592	12.894.992	12.537.592	21.681.581.650
12.687.700	12.808.400	12.570.550	9.127.035.800
12.659.300	12.776.978	12.331.228	16.438.382.764
12.716.356	12.834.034	12.570.150	12.332.012.520
12.866.128	13.735.656	12.808.400	18.480.958.936
13.674.480	14.363.475	13.674.480	18.774.417.225
17.798.092	22.146.436	17.718.090	148.773.851.018
ΣΧ1Υ	ΣΧ2Υ	ΣΧ3Υ	ΣΧ4Υ
133.668.222	142.373.763	131.488.115	356.461.772.697

III. Menentukan Nilai X1X2, X1X3, X1X4 dan X2X3

_				
Tabel 3 Nil:	ai X1X2.	X1X3.	X1X4 dan	X2X3

X1X2	X1X3	X1X4	X2X3
12.983.806	12.363.322	7.249.139.534	12.623.347
14.196.246	12.659.300	44.927.138.934	14.132.550
14.237.580	12.811.956	61.153.115.532	13.096.895
12.656.864	12.306.064	21.281.194.300	12.656.864
12.894.992	12.655.534	9.188.739.704	12.775.928
12.719.650	12.275.900	16.364.626.700	12.390.014
12.834.034	12.570.150	12.332.012.520	12.686.475
13.575.762	12.659.300	18.265.825.822	13.514.850
13.856.080	13.191.424	18.111.204.080	13.856.080
17.798.092	14.239.230	119.562.835.646	17.718.090
ΣΣΧ1Χ2	ΣΧ1Χ3	ΣΧ1Χ4	ΣΧ2Χ3
137.753.106	127.732.180	328.435.832.772	∑135.451.093

IV. Menentukan Nilai X2X4, X3X4 dan X1² **Tabel 4 Nilai X2X4, X3X4 dan X1**²

X2X4	X3X4	X1 ²
7.401.603.209	7.047.887.483	12.716.356
50.155.619.769	44.725.558.950	12.716.356
62.513.166.065	56.253.656.383	13.927.824
21.887.841.800	21.281.194.300	12.306.064
9.276.153.568	9.103.896.836	12.773.476
16.516.748.582	15.940.529.332	12.602.500
12.446.133.780	12.190.225.500	12.716.356
19.500.280.119	18.183.870.350	12.716.356
19.023.745.475	18.111.204.080	13.191.424
148.773.851.018	119.025.403.545	14.303.524
ΣΧ2Χ4	ΣΧ3Χ4	$\Sigma X1^2$
∑ 367.495.143.385	∑ 321.863.426.759	∑129.970.236

V. Menentukan Nilai X2², X3² dan X4² Tahel 5 Nilai X2² X3² dan X4²

Tabel 5 Miai A2, A3 dan A4						
X2 ²	X3 ²	X4 ²				
13.256.881	12.020.089	4.132.475.056.801				
15.848.361	12.602.500	158.728.476.365.001				
14.554.225	11.785.489	268.505.944.594.801				
13.017.664	12.306.064	36.802.118.925.625				
13.017.664	12.538.681	6.610.020.432.016				
12.837.889	11.957.764	21.249.831.940.516				
12.952.801	12.425.625	11.959.285.568.400				
14.493.249	12.602.500	26.237.106.995.089				
14.554.225	13.191.424	24.865.830.499.225				
22.146.436	14.175.225	999.423.056.004.409				
$\sum \Sigma X 2^2$	$\sum \Sigma X3^2$	$\Sigma X4^2$				
146.679.395	125.605.361	1.558.514.146.381.880				

VI. Menentukan Matriks A, A1, A2, A3, A4 dan A5

$$A = \begin{pmatrix} n & \sum X1 & \sum X2 & \sum X3 & \sum X4 \\ \sum X1 & \sum X1^2 & \sum X1X2 & \sum X1X3 & \sum X1X4 \\ \sum X2 & \sum X1X2 & \sum X2^2 & \sum X2X3 & \sum X2X4 \\ \sum X3 & \sum X1X3 & \sum X2X3 & \sum X3^2 & \sum X3X4 \\ \sum X4 & \sum X1X4 & \sum X2X4 & \sum X3X4 & \sum X4^2 \end{pmatrix}$$

$$A = \begin{pmatrix} 10 & 36.042 & 38.163 & 35.429 & 89.445.629 \\ 38.163 & 137.753.106 & 146.679.395 & 135.451.093 & 328.435.832.772 \\ 35.429 & 127.732.180 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 89.445.629 & 328.435.832.772 & 367.495.143.385 & 321.863.426.759 & 1.558.514.146.381.880 \end{pmatrix}$$

$$H = \begin{pmatrix} 37.033 & 36.042 & 38.163 & 35.429 & 89.445.629 \\ 133.668.222 & 142.373.763 & 137.753.106 & 17.732.180 & 328.435.832.772 \\ 131.488.115 & 127.732.180 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 131.488.115 & 127.732.180 & 135.451.093 & 321.863.426.759 & 1.558.514.146.381.880 \end{pmatrix}$$

$$A2 = \begin{pmatrix} 37.033 & 36.042 & 38.163 & 35.429 & 89.445.629 \\ 131.488.115 & 127.732.180 & 135.451.093 & 321.863.426.759 & 1.558.514.146.381.880 \end{pmatrix}$$

$$A2 = \begin{pmatrix} 37.033 & 36.042 & 38.163 & 35.429 & 89.445.629 \\ 36.042 & 133.668.222 & 137.753.106 & 127.732.180 & 328.435.382.772 \\ 36.042 & 133.488.115 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 35.429 & 131.488.115 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 36.042 & 139.773.763 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 38.163 & 142.373.763 & 135.451.093 & 125.605.361 & 321.863.425.759 \\ 38.163 & 137.753.106 & 142.373.763 & 135.451.093 & 367.495.143.385 \\ 36.042 & 129.970.236 & 133.668.222 & 127.732.180 & 328.435.382.772 \\ 38.163 & 137.753.106 & 142.373.763 & 135.451.093 & 367.495.143.385 \\ 38.163 & 137.753.106 & 142.373.763 & 135.451.093 & 321.863.425.759 \\ 38.163 & 137.753.106 & 142.373.763 & 135.451.093 & 328.435.382.772 \\ 36.042 & 129.970.236 & 137.753.106 & 133.668.222 & 328.435.382.772 \\ 36.042 & 129.970.236 & 137.753.106 & 133.668.222 & 328.435.382.772 \\ 36.042 & 129.970.236 & 137.753.106 & 133.668.222 & 328.435.382.772 \\ 36.042 & 129.970.236 & 137.753.106 & 133.668.222 & 328.435.382.772 \\ 36.042 & 129.970.236 & 137.753.106 & 127.732.180 & 321.863.425.759 \\ 38.163 & 137.753.106 & 146.67$$

VII. Menentukan Nilai Determinan Matriks

$$det(A) = 2,65339E + 29$$

 $det(A1) = -8,75442E + 32$
 $det(A2) = -7,55071E + 28$
 $det(A3) = 6,17712E + 28$
 $det(A4) = 5,24984E + 29$
 $det(A5) = 3,85812E + 24$

VIII. Menentukan Nilai a, b2, b3, b4 dan b5

$$a = \frac{\det(A1)}{\det(A)} = -3.299$$

$$b1 = \frac{\det(A2)}{\det(A)} = -0.285$$

$$b2 = \frac{\det(A3)}{\det(A)} = 0.233$$

$$b3 = \frac{\det(A4)}{\det(A)} = 2$$

$$b4 = \frac{\det(A5)}{\det(A)} = 0.000015$$

IX. Menentukan Persamaan Regresi

$$Y = a + b1X1 + b2X2 + b3X3 + b4X4$$

$$Y = -3.299 - 0.285X1 + 0.233X2 + 2X3 + 0.000015X4$$

ISSN: 2085-6350

X. Percobaan Menggunakan Salah Satu Data

Peneliti menggunakan data dari variabel bebas tanggal 15 Januari 2021.

$$Y = -3.299 - 0.285(3.782) + 0.233(4.706) + 2(3.765) + 0.000015(31.613.653)$$

=> Menggunakan data variabel bebas tanggal 15 Januari 2021

$$Y = -3.299 - 1.078 + 1.096 + 7.530 + 474$$

 $Y = 4.724$

=> Prediksi penutupan harga saham pada tanggal 15 Januari 2021

XI. Menentukan nilai akurasi menggunakan Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n}}$$

Keterangan:

RMSE = Nilai Root Mean Square Error Y = Nilai hasil observasi/actual/fakta

Ŷ = Nilai hasil prediksi i = Urutan data pada *database*

n = Jumlah data

Tabel 6 Menentukan Nilai RMSE

Date	Open (X1)	High (X2)	Low (X3)	Volume (X4)	Close (Y)	Prediction (Ŷ)	Y - Ŷ	(Y - Ŷ')^2
04 Januari 2021	3.566	3.641	3.467	2.032.849	3.516	3.498	18	341
05 Januari 2021	3.566	3.981	3.550	12.598.749	3.691	3.901	-210	44.203
06 Januari 2021	3.732	3.815	3.433	16.386.151	3.491	3.638	-147	21.629
07 Januari 2021	3.508	3.608	3.508	6.066.475	3.574	3.649	-75	5.607
08 Januari 2021	3.574	3.608	3.541	2.570.996	3.550	3.644	-94	8.768
11 Januari 2021	3.550	3.583	3.458	4.609.754	3.566	3.509	57	3.222
12 Januari 2021	3.566	3.599	3.525	3.458.220	3.566	3.625	-59	3.496
13 Januari 2021	3.566	3.807	3.550	5.122.217	3.608	3.749	-141	19.755
14 Januari 2021	3.632	3.815	3.632	4.986.565	3.765	3.894	-129	16.531
15 Januari 2021	3.782	4.706	3.765	31.613.653	4.706	4.724	-18	318
							TOTAL	123.871

$$RMSE = \sqrt{\frac{\sum (Y_i - \hat{Y_i})^2}{n}}$$

$$RMSE = \sqrt{\frac{123871}{10}}$$

$$RMSE = 111$$

Setelah menghitung nilai RMSE diatas dapat diketahui bahwa nilai RMSE dari 10 sample *data history* saham ARTO adalah +-111.

C. Metode Pengumpulan Data

1. Dokumentasi

Penelitian ini menggunakan metode pengumpulan data dokumentasi yang berupa catatan data historis saham ARTO dari bulan Januari tahun 2019 sampai dengan bulan Desember tahun 2021 sebanyak 737 data yang di dapatkan melalui situs ticmi.co.id

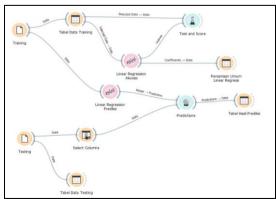
2. Studi Literatur

Studi literatur adalah metode dimana peneliti mengumpulkan data untuk memperoleh informasi dari teori – teori yang sesuai dan dibutuhkan untuk menyelesaikan permasalahan dalam penelitian. Peneliti menggunakan jurnal dan buku dari tahun 2017 sampai dengan 2021 dalam penelitian ini.

D. Sumber dan Jenis Data

1. Sumber Data

Penelitian ini menggunakan data sekunder, dimana data sekunder tersebut diperoleh dari hasil dokumentasi berupa data historis saham ARTO dari bulan Januari tahun 2019 sampai dengan bulan Desember tahun 2021 sejumlah 737 data.


2. Jenis Data

Penelitian ini menggunakan jenis data kuantitatif berupa dataset dari data historis saham ARTO bulan Januari tahun 2019 sampai dengan bulan Desember tahun 2021 dengan sejumlah 737 data. Data kuantitatif yang diperoleh akan diuji menggunakan rumus algoritma Regresi Linear.

IV. HASIL DAN PEMBAHASAN

A. Implementasi Orange Data Mining menggunakan Algoritma Regresi Linear

Penelitian ini menggunakan tools Orange Data Mining untuk melakukan penelitian terhadap saham ARTO dalam memprediksi penutupan harga saham. Data penutupan harga saham dikelola menjadi dua data, yaitu data training dan data testing dengan perbandingan 90% data training dan 10% data testing atau 610 data training dan 68 data testing.

Gambar 2 Tampilan Orange Data Mining

Adapun kegunaan widget pada software *Orange Data Mining* adalah sebagai berikut:

1. Training

Data training pada widget file sebagai data latih sebanyak 610 data dengan 6 variabel yang dibagi menjadi 5 variabel bebas dan 1 variabel terikat.

2. Testing

Data testing pada widget file sebagai data yang akan di uji dengan 5 variabel bebas dan 1 variabel terikat yaitu kategori yang menunjukkan penutupan harga saham pada data yang diuji.

3. Test and Score

Widget Test and Score memiliki fungsi untuk menunjukkan nilai RMSE data yang diuji.

4. Regresi Linear

Widget Regresi Linear menjadi algoritma yang berfungsi untuk menghitung nilai RMSE dan menghitung prediksi pada data testing.

5. Predictions

Widget Predictions berfungsi untuk melakukan prediksi data testing.

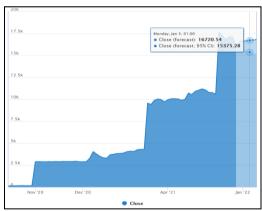
B. Hasil Analisa Data

Berdasarkan pengujian akurasi dan analisa time series pada penutupan harga saham ARTO dengan melakukan pengujian data training dan data testing menggunakan model Regresi Linear pada tools Orange Data Mining. Perbandingan dalam penelitian ini dilakukan dengan menganalisa 90% data training dan 10% data testing atau sebanyak 610 data training dan 68 data testing. Berikut merupakan hasil akurasi data dari model Regresi Linear:

Tabel 7 Hasil RMSE Regresi Linear

Model	Data <i>Training</i>	Data Testing	RMSE
Regresi Linear	90%	10%	103,064

Tabel 1 menunjukkan hasil RMSE dengan analisa time series menggunakan model Regresi Linear dengan perbandingan 90% data training dan 10% data testing atau sebanyak 610 data training dan 68 data testing dengan hasil RMSE sebesar 103,064. Hal ini membuktikan bahwa analisa Time Series penutupan harga saham ARTO memanfaatkan model Regresi Linear menghasilkan nilai akurasi yang baik.


	Close	Linear Regression Prediksi	Date	Open Price	High	Low	Volume
1	148	176.853	2019-06-11 00:00:00	164	167	148	300
2	155	169.467	2019-06-12 00:00:00	157	157	149	28500
3	160	171	2019-06-13 00:00:00	157	160	147	24500
4	163	179.099	2019-06-14 00:00:00	168	168	151	35000
5	173	185.836	2019-06-17 00:00:00	173	173	173	100
6	170	182.912	2019-06-18 00:00:00	170	170	170	100
7	168	179.965	2019-06-19 00:00:00	168	168	160	2400
8	168	180.652	2019-06-21 00:00:00	167	168	167	6700
9	2900	2870	2020-11-11 00:00:00	2930	2930	2900	91200
10	2910	2881.85	2020-11-12 00:00:00	2920	2950	2910	188300
11	2900	2855.88	2020-11-13 00:00:00	2920	2920	2860	26000
12	2890	2843.26	2020-11-16 00:00:00	2900	2900	2890	85900
13	2910	2863.16	2020-11-17 00:00:00	2900	2930	2900	132900
14	2900	2871.85	2020-11-18 00:00:00	2910	2940	2900	158800
15	2920	2868.59	2020-11-19 00:00:00	2920	2930	2900	207300
16	2900	2865.99	2020-11-20 00:00:00	2910	2930	2900	183800
17	2930	2869.86	2020-11-23 00:00:00	2930	2930	2900	75100
18	2920	2876.23	2020-11-24 00:00:00	2920	2940	2920	92700
19	2920	2875.62	2020-11-25 00:00:00	2900	2950	2900	169900
20	2930	2893.22	2020-11-26 00:00:00	2950	2960	2900	114300

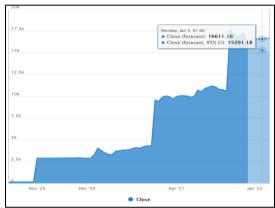
Gambar 3 Hasil Prediksi Regresi Linear

Gambar 3 diatas menunjukkan hasil dari analisa Series penutupan harga saham ARTO menggunakan model Regresi Linear perbandingan 90% data training dan 10% data testing. Hasil analisa time series menunjukkan harga prediksi saham dan harga aktual saham. Algoritma Regresi Linear dapat melakukan prediksi tunggal atau dapat melakukan prediksi terhadap data yang telah berlalu. Hasil penelitian menggunakan metode Regresi Linear ini kemudian dibandingkan dengan VAR model dan ARIMA model menggunakan dataset yang serupa dengan model Regresi Linear.

1) VAR Model

Vector Autoregressive (VAR) model digunakan untuk memodelkan ketergantungan temporal dalam rangkaian waktu multivarian yang memprediksi nilai – nilai seperangkat variabel pada suatu titik waktu tertentu yang banyak digunakan dalam peramalan dan tes kausalitas[16].

Gambar 4 Hasil Prediksi VAR Model


Gambar 4 diatas menunjukkan hasil dari analisa *time series* penutupan saham berkelanjutan menggunakan VAR model dengan dataset saham ARTO menggunakan perbandingan 90% data *training* dan 10% data *testing*. Pada tabel diatas, peneliti hanya memprediksi 3 hari kedepan dari kinerja penutupan harga saham ARTO. Berdasarkan hasil prediksi berkelanjutan yang telah dilakukan, maka diketahui bahwa harga prediksi mengalami peningkatan secara perlahan dari tanggal 03 Januari 2022 sampai dengan tanggal 05 Januari 2022. Berikut merupakan tabel hasil prediksi penutupan harga saham ARTO selama tiga hari menggunakan VAR model:

Tabel 8 Hasil Prediksi VAR Model

No	Date	Price	Price (Low)	Price (High)
1	03 Januari 2022	Rp16.720	Rp15.375	Rp18.066
2	04 Januari 2022	Rp16.766	Rp15.257	Rp18.275
3	05 Januari 2022	Rp16.810	Rp15.153	Rp18.275

2) ARIMA Model

ARIMA model adalah model yang mengabaikan independen variabel dalam pembuatan peramalan. ARIMA menggunakan nilai masa lalu dan sekarang dari variabel dependen untuk menghasilkan peramalan jangka pendek yang akurat, namun untuk peramalan jangka panjang ketepatan peramalannya kurang baik[17].

Gambar 5 Hasil Prediksi ARIMA Model

Gambar 5 diatas menunjukkan hasil dari analisa *time series* penutupan saham berkelanjutan menggunakan ARIMA model dengan dataset saham ARTO menggunakan perbandingan 90% data *training* dan 10% data *testing*. Pada tabel diatas, peneliti hanya memprediksi 3 hari kedepan dari kinerja penutupan harga saham ARTO. Berdasarkan hasil prediksi berkelanjutan yang telah dilakukan, maka diketahui bahwa harga prediksi mengalami peningkatan secara perlahan dari tanggal 03 Januari 2022 sampai dengan tanggal 05 Januari 2022. Berikut merupakan tabel hasil prediksi penutupan harga saham ARTO selama tiga hari menggunakan ARIMA model:

Tabel 9 Hasil Prediksi ARIMA Model

	Tabel 9 Hash Flediksi AktiviA Model						
No	Date	Price	Price (Low)	Price (High)			
1	03 Januari 2022	Rp16.611	Rp15.291	Rp17.931			
2	04 Januari 2022	Rp16.664	Rp15.191	Rp18.136			
3	05 Januari 2022	Rp16.671	Rp15.053	Rp18.289			

Berdasarkan hasil prediksi berkelanjutan penutupan harga saham ARTO dengan membandingkan VAR model dengan ARIMA model yang telah dilakukan, diketahui bahwa hasil prediksi dengan menggunakan VAR model menghasilkan prediksi penutupan harga saham ARTO yang lebih tinggi dibandingkan dengan ARIMA model selama tiga hari kedepan.

Penelitian ini juga membandingkan hasil nilai akurasi RMSE dari model *Regresi Linear*, VAR model dan ARIMA model. Berikut hasil RMSE dari model *Regresi Linear*, VAR model dan ARIMA model:

Tabel 10 Hasil Perbandingan RMSE

Tabel 10 Hasil Perbandingan RMSE						
Model	Data Training	Data Testing	RMSE			
ъ .	70%	30%	117,185			
Regresi Linear	80%	20%	142,080			
	90%	10%	103,064			
WAD	70%	30%	834,1			
VAR Model	80%	20%	834,2			
	90%	10%	428,1			
ADIMA	70%	30%	742,7			
ARIMA Model	80%	20%	746,4			
	90%	10%	396,3			

Berdasarkan Tabel 4.6 diatas, diketahui bahwa akurasi RMSE dari metode Regresi Linear dengan menggunakan perbandingan 90% data training dan 10% data testing menghasilkan angka terkecil dari metode Regresi Linear dengan perbandingan 70%:30% dan 80%:20%. Akurasi RMSE dengan metode Regresi Linear menggunakan perbandingan 90%:10% menghasilkan nilai RMSE sebesar 103,064. Nilai RMSE tersebut memiliki hasil yang paling kecil diantara VAR model dan ARIMA model, yang dimana dalam akurasi RMSE sebuah prediksi dapat dikatakan lebih akurat jika memiliki nilai RMSE yang paling kecil (mendekati 0). Hal ini dapat di artikan bahwa metode Regresi Linear dengan perbandingan 90%:10% mampu menghasilkan nilai akurasi prediksi paling baik diantara VAR model dan ARIMA model.

V. KESIMPULAN

Berdasarkan penelitian dan pengujian dataset dalam prediksi penutupan harga saham pada PT Bank Jago Tbk. (ARTO), dengan pengujian data sebanyak 678 dataset dari tahun 2019 sampai dengan tahun 2021 menggunakan 6 variabel yang diuji. Sebanyak 678 dataset dalam penelitian ini dibagi menjadi 2 jenis data yaitu data latih (data training) dan data uji (data testing) dengan menggunakan perbandingan 90% data training dan 10% data testing atau sebanyak 610 data training dan 68 data testing. Kesimpulan pada penelitian ini adalah sebagai berikut:

- Analisa Time Series penutupan harga saham pada PT Bank Jago Tbk. (ARTO) menggunakan metode Regresi Linear dengan Tools Orange Data Mining mampu melakukan prediksi tunggal atau mampu menunjukkan harga prediksi penutupan harga saham dengan harga aktual penutupan harga saham menggunakan data yang sudah berlalu.
- Hasil penelitian menunjukkan bahwa metode Regresi Linear menggunakan tools Orange Data Mining mampu menghasilkan nilai akurasi RMSE sebesar 103,064. Dimana nilai akurasi prediksi ini menjadi yang paling baik dibandingkan dengan VAR model dan ARIMA model.

Hal ini menunjukkan bahwa metode Regresi Linear memiliki tingkat akurasi yang paling baik untuk memprediksi penutupan harga saham ARTO dibandingkan dengan VAR model dan ARIMA model. Dari hasil uji yang di dapat, metode Regresi Linear mampu melakukan prediksi penutupan harga saham dengan menunjukkan harga saham aktual dan harga saham prediksi menggunakan data yang sudah berlalu. Sedangkan, penelitian ini juga menggunakan dua metode tambahan untuk melakukan prediksi penutupan harga saham berkelanjutan, yaitu dengan menggunakan VAR model dan ARIMA model.

DAFTAR PUSTAKA

- [1] A. HARSONO, "Faktor-Faktor Yang Mempengaruhi Nilai Perusahaan Non Keuangan Yang Terdaftar Di Bursa Efek Indonesia," *J. Bisnis dan Akunt.*, vol. 20, no. 2, pp. 117–126, 2019, doi: 10.34208/jba.v20i2.416.
- [2] I. Halimi and W. A. Kusuma, "Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Neural Network," *J. Edukasi dan Penelit. Inform.*, vol. 4, no. 1, p. 24, 2018, doi: 10.26418/jp.v4i1.25384.
- [3] W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, "Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine," *Fountain Informatics J.*, vol. 5, no. 2, p. 45, 2020, doi: 10.21111/fij.v5i2.4449.
 - [4] M. Arhamni and M. Nasir, *DATA MINING Algoritma dan Implementasi*. Yogyakarta: Penerbit ANDI, 2020.
 - [5] E. P. Ariesanto Akhmad, "Data Mining Menggunakan Regresi Linear untuk Prediksi Harga Saham Perusahaan Pelayaran," *J. Apl. Pelayaran dan Kepelabuhanan*, vol. 10, no. 2, p. 120, 2020, doi: 10.30649/japk.v10i2.83.
 - [6] V. Gururaj and S. V R, "Stock Market Prediction using Linear Regression and Support Vector Machines," *Int. J. Appl. Eng. Res.*, vol. 14, no. 8, pp. 1931–1934, 2019, [Online]. Available: http://www.ripublication.com.

- [7] R. Seethalakshmi, "Analisis Variabel Prediktor Pasar Saham Menggunakan Regresi Linier," vol. 3395, no. 15, pp. 369–378, 2018.
 - [8] S. C. Agrawal, "Deep learning based non-linear regression for Stock Prediction," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 1116, no. 1, p. 012189, 2021, doi: 10.1088/1757-899x/1116/1/012189.
- [9] T. A. Lubis, Manajemen Investasi (Pendekatan Teoritis dan Empiris). 2009.
 - [10] S. Elviani, R. Simbolon, and S. P. Dewi, "Faktor-Faktor Yang Mempengaruhi Harga Saham Perusahaan Telekomunikasi," *J. Ris. Akunt. Multiparadigma*, vol. 6, no. 1, pp. 29– 39, 2019.
 - [11] N. W. Utami and A. Paramitha, "Penerapan Data Mining Untuk Mengetahui Pola Pemilihan Program Studi Di Stmik Primakara Menggunakan Algoritma K-Means ...," *J. Teknol. Inf. dan ...*, vol. 3, pp. 456–463, 2021, [Online]. Available: http://jurnal.undhirabali.ac.id/index.php/jutik/a
 - http://jurnal.undhirabali.ac.id/index.php/jutik/article/view/1540.
 - [12] P. Esling and C. Agon, "Time-series data mining," *ACM Comput. Surv.*, vol. 45, no. 1, 2012, doi: 10.1145/2379776.2379788.
 - [13] R. A. raffaidy Wiguna and A. I. Rifai, "Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining," *J. Inf. Syst. Informatics*, vol. 3, no. 1, pp. 1–12, 2021, doi: 10.33557/journalisi.v3i1.78.
 - [14] E. Buulolo, *Data Mining Untuk Perguruan Tinggi*, 1st ed. Yogyakarta: Deepublish, 2020.
 - [15] N. W. Utami, I. N. Sukajaya, I. Made Candiasa, and E. G. A. Dewi, "The implementation of data mining to show UKT (students' tuition) using fuzzy C-means algorithm: (Case study: Universitas Pendidikan Ganesha)," 2019 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2019, pp. 101–106, 2019, doi: 10.1109/ICACSIS47736.2019.8979933.
 - [16] A. Wulandari, "Perbandingan Klasifikasi Pergerakan Harga Saham Pt. Astra Internasional Tbk Menggunakan Vector Auto Regressive (var) Stasioner Dan Logistic ...," *eProceedings Eng.*, vol. 7, no. 1, pp. 2614– 2626, 2020.
 - [17] Sismi and M. Y. Darsyah, "Perbandingan Prediksi Harga Saham PT.BRI, Tbk dengan METODE ARIMA dan MOVING AVERAGE," *Pros. Semin. Nas. Mhs. Unimus*, vol. 1, no. 1, pp. 351–360, 2018, [Online]. Available:
 - http://prosiding.unimus.ac.id/index.php/mahasi swa/article/view/170.