Algoritma Aliran Daya dengan Metode Backward/Forward Sweep pada Sistem Distribusi Radial

Dian Budhi Santos, Sarjiya, Sasonkgo Pramono Hadi
Departemen Teknik Elektro dan Teknologi Informasi Fakultas Teknik Universitas Gadjah Mada
Jln. Grafika 2 Yogyakarta 55281 Indonesia
dian.budhi.s@ugm.ac.id, sarjiya@mti.ugm.ac.id, sasonkgo@te.ugm.ac.id

Abstract—This paper presents backward/forward (BW/FW) sweep algorithm for load flow analysis of radial distribution networks. In backward sweep, Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL) are used to compute the bus voltage from fanest node. In forward sweep, downstream bus voltage is updated starting from the source node. The procedure stops after the mismatch of the calculated and the specified voltages at the substation is less than a convergence tolerance. Line losses are ascertained thereafter utilizing updated bus voltage. Using this method, load flow solution for a distribution network can be obtained without solving any set of simultaneous equations. The proposed algorithm is tested by IEEE 33 bus radial distribution system. Test results are obtained by programming using MATLAB.

Keywords—radial distribution system, load flow analysis, backward/forward sweep

I. PENDAHULUAN

II. BACKWARD/FORWARD SWEEP

A. Metode Penyelesaian Aliran Daya

Matriks admittance tidak digunakan pada aliran daya jaringan distribusi, berbeda dengan metode aliran daya pada jaringan transmisi. Pada kasus ini, karena rendahnya keterhubungan antara saluran satu dengan lainnya, persamaan KVL dan KCL secara langsung dibentuk pada bagian saluran.

Berdasarkan penjelasan di atas, dikembangkan metode aliran daya distribusi untuk jaringan dengan jumlah sumber yang banyak.

B. Backward Sweep

\[I_{tdi} = \left[\frac{P_t + Q_t}{V_i} \right]^* \]

 dengan,

\[I_{tdi} : \text{Arus beban pada titik } i \]
\[P_t : \text{Kebutuhan daya aktif pada titik } i \]
\[Q_t : \text{Kebutuhan daya reaktif pada titik } i \]
\[V_i : \text{Tegangan pada titik } i \]

C. Forward Sweep

Pada forward sweep, dimulai dari titik sumber utama dimana nilai tegangannya diketahui, impedansi dan arus yang mengalir pada masing-masing saluran sudah diketahui. Semua titik diperbarui mengabaikan sumber lainnya jika ada.

\[V_i = V_{ti} - Z_i I_i \]

Dimana:

\[V_i : \text{Tegangan pada titik } i \]
\[V_{ti} : \text{Tegangan pada atas dari titik } i \]
\(Z_i \): Impedansi saluran \(i \)

\(I_{i} \): Arus yang mengalir pada saluran \(i \)

D. Pemodelan Struktur Jaringan

Berdasarkan contoh sistem distribusi radial pada Fig. 1 dapat dibuat formasi dengan menggunakan matriks BBIC, BCBV, dan DLF [5][6][7].

![Fig. 1. Sampel Sistem Distribusi Radial 6 bus](image)

E. Matriks Bus Injection to Branch Current (BBIC)

Untuk sistem distribusi, pada bus ke- \(j \), beban komplex dapat diexpresskan dengan persamaan (3) dan nilai ekuivalen arus injeksi yang bersangkutan dapat diexpresskan dengan persamaan (4).

\[
S_i = (P_i + jQ_i), \quad i = 1, 2, ..., N
\]

\[
I_i = \left(\frac{S_i}{V_i}\right)^* (4)
\]

Vektor injeksi arus dari sampel sistem di atas dapat dibuat pada Table I. sebagai berikut:

<table>
<thead>
<tr>
<th>Bus No.</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arus injeksi</td>
<td>(I_2)</td>
<td>(I_3)</td>
<td>(I_4)</td>
<td>(I_5)</td>
<td>(I_6)</td>
</tr>
</tbody>
</table>

Untuk sistem pada Fig. 1 diaplikasikan Kirchhoff’s Current Law (KCL), arus cabang dapat diexpresskan dengan nilai arus injeksi ekuivalen sebagai berikut:

\[
B_1 = I_2 + I_3 + I_4 + I_5 + I_6
\]

\[
B_2 = I_2 + I_3 + I_5 + I_6
\]

\[
B_3 = I_6
\]

\[
B_4 = I_5
\]

\[
B_5 = I_4 + I_5
\]

\[
B_6 = I_3 + I_4
\]

\[
B_7 = I_2 + I_3 + I_4 + I_5 + I_6
\]

\[
B_8 = I_2 + I_3 + I_4 + I_5 + I_6
\]

Persamaan arus cabang di atas dapat disusun dengan bentuk umum sebagai berikut:

\[
B = [BIBC][I]
\]

F. Matriks Branch Current to Bus Voltage (BCBV)

Hubungan antara arus cabang dan tegangan bus dapat diexpresskan sebagai berikut:

\[
V_2 = V_1 - B_1Z_{12}
\]

\[
V_3 = V_2 - B_2Z_{23}
\]

\[
V_4 = V_3 - B_3Z_{34}
\]

\[
V_5 = V_4 - B_4Z_{45}
\]

\[
V_6 = V_5 - B_5Z_{56}
\]

Dengan mensubstitusi persamaan (12) dan (13) kepada (14), maka didapatkan tegangan pada bus 4 sebagai berikut:

\[
V_4 = V_1 - B_1Z_{12} - B_2Z_{23} - B_3Z_{34}
\]

Sama seperti nilai tegangan pada bus lain ditulis sebagai berikut:

\[
V_5 = V_1 - B_1Z_{12} - B_2Z_{23} - B_3Z_{34} - B_4Z_{45}
\]

\[
V_6 = V_1 - B_1Z_{12} - B_2Z_{23} - B_3Z_{34} - B_4Z_{45} - B_5Z_{56}
\]

Persamaan (11), (16), (17), (18), (19) dapat disusun sebagai berikut:

\[
[V] = [BCBV][B]
\]

Sekarang, substitusi persamaan (11) ke dalam (22) dan hasil persamanya dapat diexpresskan sebagai berikut:

\[
[V] = [BCBV][BIBC][I]
\]

\[
[V] = [DLF][I]
\]

Dengan DLF adalah matriks Distribution Load Flow yang ditunjukan dengan matriks berikut [8]:

\[
\begin{pmatrix}
Z_{12} & Z_{13} & Z_{14} & Z_{15} & Z_{16} \\
Z_{13} & Z_{13} + Z_{23} & Z_{14} & Z_{15} & Z_{16} \\
Z_{14} & Z_{13} + Z_{23} & Z_{14} + Z_{24} & Z_{15} & Z_{16} \\
Z_{15} & Z_{13} + Z_{23} & Z_{14} + Z_{24} & Z_{15} + Z_{25} & Z_{16} \\
Z_{16} & Z_{13} + Z_{23} & Z_{14} + Z_{24} & Z_{15} + Z_{25} & Z_{16}
\end{pmatrix}
\]

Langkah-langkah penyelesaian aliran daya menggunakan metode backward and forward dijelaskan pada Fig. 2.
Metode yang diusulkan telah diuji pada sistem distribusi radial IEEE 33 bus yang ditunjukkan pada Fig. 3. menggunakan MATLAB Version 7.6.0.324 (R2008a) dengan spesifikasi laptop Processor Intel(R) Core(TM) i5-5200U CPU @2.20 GHz (4 CPUs), RAM 8 GB dan sistem operasi Windows 10 Education 64-bit (English).

Dengan data saluran dan beban yang terhubung di bus tujuan yang ditunjukkan pada Table II. sebagai berikut [9][10][11][12];

<table>
<thead>
<tr>
<th>Branch No.</th>
<th>From bus</th>
<th>To bus</th>
<th>R (Ω)</th>
<th>X (Ω)</th>
<th>Load at to bus P (kW)</th>
<th>Q (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.0922</td>
<td>0.0477</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0.4930</td>
<td>0.2511</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0.3660</td>
<td>0.1864</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0.3811</td>
<td>0.1941</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0.8190</td>
<td>0.7070</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>0.1872</td>
<td>0.6188</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1.7114</td>
<td>1.2351</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>1.0300</td>
<td>0.7400</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>0.1966</td>
<td>0.0650</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>0.3744</td>
<td>0.1238</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>1.4680</td>
<td>1.1550</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>0.5416</td>
<td>0.7129</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>0.5910</td>
<td>0.5260</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>15</td>
<td>0.7463</td>
<td>0.5450</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>16</td>
<td>1.2890</td>
<td>1.7210</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>17</td>
<td>0.7320</td>
<td>0.5740</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>18</td>
<td>0.1640</td>
<td>0.1565</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>19</td>
<td>1.5042</td>
<td>1.3554</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>0.4095</td>
<td>0.4784</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>21</td>
<td>0.7089</td>
<td>0.9373</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>22</td>
<td>0.4512</td>
<td>0.3083</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>23</td>
<td>0.8980</td>
<td>0.7091</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>24</td>
<td>0.8960</td>
<td>0.7011</td>
<td>420</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>25</td>
<td>0.2030</td>
<td>0.1034</td>
<td>420</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>26</td>
<td>0.2842</td>
<td>0.1447</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>27</td>
<td>1.0590</td>
<td>0.9337</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>28</td>
<td>0.8042</td>
<td>0.7006</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>29</td>
<td>0.5075</td>
<td>0.2585</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>30</td>
<td>0.9744</td>
<td>0.9630</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>31</td>
<td>0.3105</td>
<td>0.3619</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>32</td>
<td>0.3410</td>
<td>0.5302</td>
<td>210</td>
<td>100</td>
</tr>
</tbody>
</table>

Nilai arus dan drop tegangan yang mengalir di setiap cabang akan dihitung menggunakan elemen dari matrik K. Dengan data saluran dari tes sistem IEEE 33 bus pada Table II. Tegangan dasarnya adalah 12.6 kV dan bus MVA adalah 100. Toleransi adalah 0.0001 p.u. Hasil ditunjukkan pada Table III. dan Table IV. Besarnya tegangan pada p.u. dan sudut fasa dalam derajat pada setiap bus ditunjukkan pada Table III. dan rugi-rugi daya aktif dan reaktif pada masing-masing cabang pada kW dan kVAR masing-masing, ditunjukan pada Table IV. Profil tegangan dalam sistem ditunjukkan pada Fig. 3.
TABLE IV. RUGI-RUGI DAYA AKTIF DAN REAKTIF

<table>
<thead>
<tr>
<th>Branch From bus</th>
<th>To bus</th>
<th>Ploss (kW)</th>
<th>Qloss (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>12.24657</td>
<td>6.335808</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>51.82531</td>
<td>26.39622</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19.92447</td>
<td>10.14732</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>18.72242</td>
<td>9.535612</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>38.29595</td>
<td>33.05890</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.944104</td>
<td>6.426343</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11.86043</td>
<td>8.559554</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>4.261036</td>
<td>3.061327</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3.615074</td>
<td>2.572264</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0.564198</td>
<td>0.186535</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0.897960</td>
<td>0.296929</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>2.717572</td>
<td>2.138144</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0.743293</td>
<td>0.978386</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>0.364095</td>
<td>0.324051</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.287033</td>
<td>0.209611</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>0.256595</td>
<td>0.342391</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>0.054183</td>
<td>0.042488</td>
</tr>
</tbody>
</table>

Sistem IEEE 33 bus terdiri dari 33 node dan 32 cabang ditunjukkan pada Fig. 3. Tegangan dasar untuk sistem ini adalah 12,66 kV dan base MVA adalah 100. Toleransi adalah 0,00001 p.u. Besarnya tegangan pada p.u. Dan sudut fasa pada derajat pada setiap bus ditunjukkan pada Table III. dan rugi-rugi daya
aktif dan reaktif pada masing-masing cabang, ditunjukkan pada Table IV. Profil tegangan sistem ditunjukkan pada Fig. 4.

IV. KESIMPULAN

Hasil pengujian menunjukkan bahwa metode *backward and forward sweep* dapat digunakan untuk menganalisis aliran daya pada tes sistem IEEE 33 bus. Metode ini menggunakan persamaan aljabar sederhana untuk menghitung secara iterative dan memiliki konvergensi yang cepat untuk sistem distribusi membutuhkan 4 hingga 5 kali iterasi. Hal ini membuat algoritma sangat baik dan efisien secara numerik untuk konvergensi dan dapat diterapkan pada variasi jaringan distribusi yang luas.

REFERENCES

